

EGGER PerfectSense

Bearbeitung von EGGER PerfectSense-Lackplatten

Die hochwertigen EGGER PerfectSense-Lackplatten mit matter, hochglänzender oder matt-strukturierter Oberfläche überzeugen mit visueller Perfektion und ansprechender, natürlich-wirkender Haptik. Die mit mehrfachen Lackschichten veredelten Oberflächen eignen sich ausgezeichnet für den Einsatz im gehobenen Möbelsegment und verleihen Inneneinrichtungen einen exklusiven, edlen sowie authentischen Charakter. Dank der breiten Auswahl an Trägermaterialien und Oberflächenvarianten, lassen sich PerfectSense-Lackplatten vielseitig und flexibel einsetzen.

Allgemeine Bearbeitungsrichtlinien

Bei der Bearbeitung von EGGER PerfectSense-Lackplatten sollten je nach Bearbeitungsverfahren die Richtwerte aus der Tabelle für die Wahl der Schnittgeschwindigkeit (v_c) und den Zahnvorschub (f_z) beachtet werden.

Bearbeitungs- verfahren	Schnittgeschwindigkeit v _c m/s
Sägen	60 - 90
Zerspanen	60 - 80
Fräsen	40 - 70
Bohren	0,5 - 2,0

Bearbeitungs- verfahren	Zahnvorschub f _z mm
Sägen	0,05 - 0,12
Zerspanen	0,10 - 0,15
Fräsen	0,40 - 0,60
Bohren	0,05 - 0,15

Diese Parameter stehen im Zusammenhang mit Werkzeugdurchmesser (D), Zähnezahl (Z), Drehzahl (n) und Vorschubgeschwindigkeit (v_f) im Einsatz auf der Bearbeitungsmaschine. Die richtige Wahl dieser Faktoren ist für ein gutes Bearbeitungsergebnis verantwortlich.

Für die Berechnung von Schnittgeschwindigkeit, Zahnvorschub und Vorschubgeschwindigkeit gelten folgende Formeln:

vc - Schnittgeschwindigkeit [m/s]

 $v_c = D \cdot \pi \cdot n / 60 \cdot 1000$

D – Werkzeugdurchmesser [mm]

n – Werkzeugdrehzahl [min⁻¹]

f_z - Zahnvorschub [mm]

 $f_z = v_f \cdot 1000 / n \cdot z$

v_f – Vorschubgeschwindigkeit [m/min]

n – Werkzeugdrehzahl [min-1]

z – Zähnezahl

EGGER PerfectSense

v_f - Vorschubgeschwindigkeit [m/min-1]

 $v_f = f_z \cdot n \cdot z / 1000$

f_z – Zahnvorschub [mm]

n – Werkzeugdrehzahl [min-1]

z – Zähnezahl

Werkzeug allgemein

Für eine optimale Kantenqualität sind Werkzeuge mit neuen bzw. neu instand gesetzten Schneiden zu empfehlen.

Schneidstoff

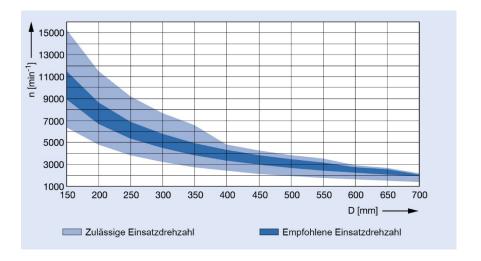
Grundsätzlich können sowohl Werkzeuge mit Hartmetall-Schneiden (HW) als auch Diamantschneiden (DP-Diamant Polykristalliner) verwendet werden. Um eine Standwegverlängerung bei hohem Schnittaufkommen zu erreichen, wird der Einsatz von Werkzeugen mit Diamantschneiden (DP) empfohlen.

EGGER PerfectSense

Zuschnitt der Platten mit Kreissägeblättern

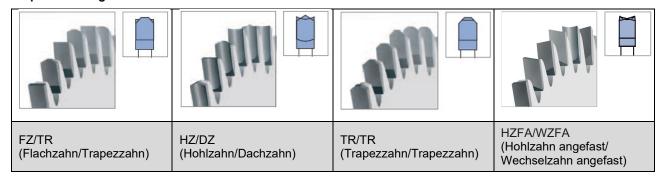
Allgemein zu beachten ist:

- Sichtseite (Dekorseite mit Folie) nach oben
- Auf richtigen Sägeblattüberstand achten (siehe Tabelle)
- Drehzahl und Zähnezahl auf Vorschubgeschwindigkeit anpassen
- Einsatz eines Ritzkreissägeblattes ist für saubere Schnitte an der Plattenunterseite zu empfehlen


Je nach Sägeblattüberstand ändern sich der Eintritts- und Austrittswinkel und damit die Qualität der Schnittkante. Wird die obere Schnittkante unsauber, ist das Kreissägeblatt höher einzustellen. Bei unsauberem Schnitt an der Unterseite ist das Kreissägeblatt tiefer einzustellen. So muss die günstigste Höheneinstellung ermittelt werden.

Bei Format- und Plattenaufteilsägen sind je nach Durchmesser (D) nachfolgend aufgeführte Sägeblattüberstände (Ü) einzustellen:

Kreissägeblattdurchmesser D [mm]	Überstände Ü [mm]
250	
300	
350	ca. 5 - 10
400	
450	


Kreissägeblätter mit einer hohen Zähnezahl sind für eine gute Bearbeitungsqualität generell zu empfehlen. Beim Kreissägen liegt die empfohlene Schnittgeschwindigkeit v_c bei 60 - 90 m/s.

EGGER PerfectSense

Empfohlene Sägezahnformen

Formatsägen

mit der Sägezahnform Hohlzahn/Dachzahn (HZ/DZ) liefern die besten Schnittergebnisse auf den Maschinen ohne Ritzaggregat. Bei den Maschinen mit Ritzaggregat bietet auch die Sägezahnform Flachzahn/Trapezzahn (FZ/TR) gute Schnittergebnisse bei höherem Werkzeugstandweg im Vergleich zu HZ/DZ.

Formatschnitt ohne Vorritzen Excellent

D [mm]	SB [mm]	TDI [mm]	BO [mm]	NLA [mm]	Z	ZF	SW Grad	ID
250	3,2	2,2	30	KNL	54	HZ/DZ	10	161300
303	3,2	2,2	30	KNL	68	HZ/DZ	10	161301
350	3,5	2,5	30	KNL	80	HZ/DZ	10	161302

Weitere Abmessungen auf Anfrage lieferbar

Formatschnitt mit Vorritzen Premium

D [mm]	SB [mm]	TDI [mm]	BO [mm]	NLA [mm]	Z	ZF	Тур	SW Grad	ID
250	3,2	2,2	30	KNL	60	FZ/TR	UT	10	163002
250	3,2	2,2	30	KNL	80	FZ/TR		10	163003
300	3,2	2,2	30	KNL	72	FZ/TR	UT	10	163005
300	3,2	2,2	30	KNL	96	FZ/TR		10	163006
350	3,5	2,5	30	KNL	84	FZ/TR	UT	10	163007
350	3,5	2,5	30	KNL	108	FZ/TR		10	163008

EGGER PerfectSense

Um eine arbeitsfreundliche Bearbeitung zu schaffen, werden WhisperCut Kreissägeblätter mit DP-Schneidstoff empfohlen. WhisperCut Kreissägeblätter erzeugen bis zu 10 dB(A) weniger Lärm und können mit Standard-Spaltkeilen auf Maschinen mit Ritzaggregat verwendet werden.

Formatschnitt Excellent - WhisperCut

D [mm]	SB [mm]	TDI [mm]	BO [mm]	NLA [mm]	Z	ZF	SW Grad	ID
250	3,2	2,4	30	KNL	50	HZFA/WZFA	10	190697
303	3,2	2,4	30	KNL	60	HZFA/WZFA	10	190698
350	3,2	2,4	30	KNL	70	HZFA/WZFA	10	190699

EGGER PerfectSense

Plattenaufteilsägen

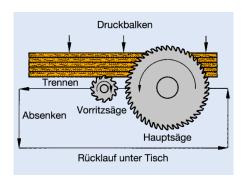
mit Sägezahnformkombinationen, wie Flach- / Trapezzahn (FZ/TR) oder Trapez- / Trapezzahn (TR/TR), sind hierfür empfehlenswert. Der Sägentyp Leitz RazorCut PLUS (TR/TR) erzielt hierbei die beste Schnittqualität.

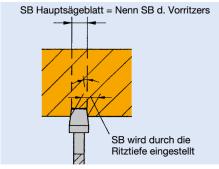
Aufteilen von Einzelplatten und Plattenpaketen - Premium

D [mm]	SB [mm]	TDI [mm]	BO [mm]	NLA [mm]	z	ZF	SW Grad	ID
300	4,4	3,2	30	KNL	60	FZ/TR	15	163400
350	4,4	3,2	60	KNL	72	FZ/TR	15	163408
350	4,4	3,2	60	2/14/100	72	FZ/TR	15	163409
380	4,8	3,5	60	2/14/100 2/14/125	72	FZ/TR	15	163418
380	4,4	3,2	30	2/14/100 2/14/125	72	FZ/TR	15	163419

Weitere Abmessungen auf Anfrage lieferbar

Aufteilen von Einzelplatten in Fertigschnittqualität Excellent - RazorCut PLUS


D [mm]	SB [mm]	TDI [mm]	BO [mm]	NLA [mm]	z	ZF	SW Grad	ID
300	4,4	3,2	30	KNL	60	TR/TR	15	161137
350	4,4	3,2	60	KNL	72	TR/TR	15	161149
350	4,4	3,2	60	2/14/100	72	TR/TR	15	161150
380	4,8	3,5	60	2/14/100 2/14/125	72	TR/TR	15	161159
380	4,4	3,2	30	2/14/100 2/14/125	72	TR/TR	15	161156


EGGER PerfectSense

Ritzkreissägeblätter

Bei EGGER PerfectSense-Lackplatten ist zum Erzielen einer guten Schnittkantenqualität auf der Zahnaustrittsseite die Verwendung eines Vorritzaggregates empfehlenswert. Die Schnittbreite des Ritzkreissägeblattes ist dabei geringfügig größer als die des Hauptkreissägeblattes einzustellen, sodass der austretende Zahn der Hauptsäge die Schnittkante nicht mehr berühren kann. Auf Tisch- und Formatkreissägemaschinen werden geteilte Ritzkreissägeblätter verwendet.

Plattenaufteilanlage mit Ritzaggregat und Druckeinrichtung

Alle Abmessungen auf Anfrage lieferbar

Einsatzschema konisches Ritzkreissägeblatt. Bei der Instandsetzung der Werkzeuge ist zu empfehlen, die Ritzkreissägeblätter mit den Hauptsägen im Satz zu schärfen.

EGGER PerfectSense

Fügefräsen auf Tischfräse oder Durchlaufanlagen

Um an den Decklagen der Platte ausbruchfreie Kanten zu erzeugen sind Fügewerkzeuge mit wechselseitigem Achswinkel einzusetzen. Hierbei sind Diamant-Messerköpfe, wie Leitz WhisperCut mit einem Achswinkel von 30° oder WhisperCut Edge-Expert mit einem Achswinkel von 50°, zu empfehlen. Die Spanabnahme sollte so gering wie möglich sein und 2 mm nicht überschreiten.


Vorteilhaft für gute Fräsergebnisse ist der Einsatz von Werkzeugen mit hoher Rundlaufgenauigkeit und Wuchtgüte, die durch Verwendung zentrierender Schnittstellen, wie Hydrospannsysteme, HSK-Aufnahmen oder Schrumpfspannsysteme, erreicht werden.

Beim Arbeiten mit Handvorschub auf Tischfräsen dürfen nur Werkzeuge mit Kennzeichnung "MAN" oder "BG-Test" eingesetzt werden. Weiterhin darf der auf dem Werkzeug angegebene Drehzahlbereich aus Sicherheitsgründen weder über- noch unterschritten werden. Die Werkzeuge für Handvorschub dürfen nur im Gegenlauf verwendet werden.

Werkzeugbeispiele:

DP-Fügefräser WhisperCut

DP-WhisperCut EdgeExpert

DP-Fügefräser festbestückt

DP-Fügefräser EdgeExpert

Die Einsatzparameter der Fügefräser sollten so gewählt werden, dass der Zahnvorschub (fz) zwischen 0,4 und 0,6 mm liegt. Für ein perfektes Schnittergebnis ist die Ausführung EdgeExpert zu bevorzugen.

EGGER PerfectSense

WhisperCut

Abmessung DxSBxBO	Drehzahl n	Zähnezahl Z	Vorschub- geschw. v _f	ID, DP Wh	isperCut	Maschine
[mm]	[min ⁻¹]		[m/min]	LL	RL	
85x43x30	12.000	3	14 - 21	192209	192210	Ott
100x43x30	12.000	2	9 - 15	192082	192083	Stefani, Holz Her
100x43x30	12.000	2	9 - 15	192233	192234	Hebrock, EBM
100x43x30	12.000	3	14 - 21	192088	192088	Biesse
100x43x30	12.000	3	14 - 21	090885	090886	Brandt
125x32x30	9.000	3	11 - 17	192092	192093	IMA
125x43x30	9.000	3	11 - 17	075627	075627	Homag, Biesse
125x43x30	9.000	3	11 - 17	192094	192095	IMA

Weitere Abmessungen auf Anfrage lieferbar

WhisperCut EdgeExpert

epe a.t = a.g	- P					
Abmessung DxSBxBO	Drehzahl n	Zähnezahl Z	Vorschub- geschw. v _f	ID, DP WhisperCut		Maschine
[mm]	[min ⁻¹]		[m/min]	ш	RL	
125x43x30	12.000	3	11 - 17	192249	192249	Biesse, Homag
125x63x30	12.000	3	11 - 17	192250	192250	Biesse
125x43x30	12.000	3	11 - 17	192251	192252	IMA
125x63x30	12.000	3	11 - 17	192301	192302	IMA

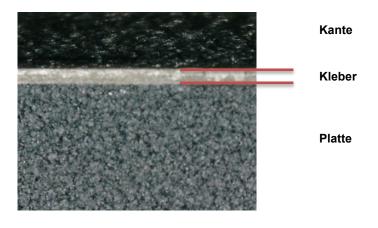
EGGER PerfectSense

Zerspaner für Durchlaufmaschinen

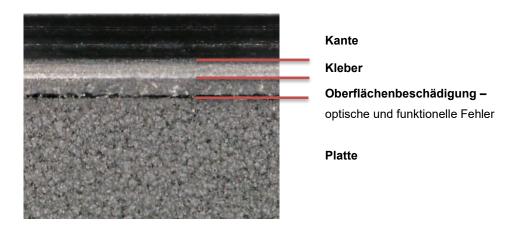
Empfehlenswert sind Diamant-Kompaktzerspaner, die wenig Reibung und Schnittdruck erzeugen. Besonders geeignet ist der Typ Leitz Diamaster DT Premium montiert auf Hydro-Spannelement mit höchstem Rund- und Planlauf für ausgezeichnete Bearbeitungsqualität und langen Werkzeugstandweg. Die Schnittgeschwindigkeit (v_c) beträgt 80 m/s bei der üblichen Drehzahl (n) 6000 min⁻¹ und Durchmesser (D) 250 mm. Einsatzparameter und Zähnezahl der Zerspaner sollten so gewählt werden, dass der Zahnvorschub (f_z) zwischen 0,10 - 0,15 mm liegt.

Abmessung	Drehzahl n	756	Vorschubgeschw.	ID, DT F	remium
DxSBxBO [mm]	[min ⁻¹]	Zähnezahl Z	v _f [m/min]	LL	RL
250x10x60	6.000	24	17 - 23	190410	190411
250x10x60	6.000	36	24 - 33	190418	190419
250x10x60	6.000	48	30 - 43	190426	190427
250x10x60	6.000	60	38 - 55	190434	190435

Leitz DT Premium Zerspaner


EGGER PerfectSense

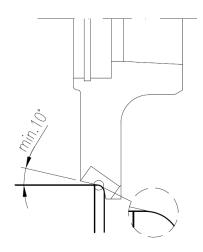
Kantennachbearbeitung auf Kantenanleimmaschinen


Radienfräser und Ziehklingen auf Kantenanleimmaschinen sind so einzustellen, dass die Werkzeuge keine Beschädigungen der Oberfläche verursachen.

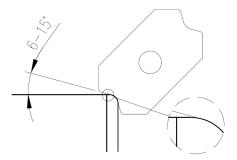
Einstellung

Richtige Einstellung

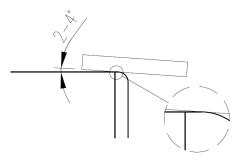
Falsche Einstellung – Ziehklinge 0,1 mm zu tief eingestellt



EGGER PerfectSense


Radien-/Fasefräser

Radienfräser sollten einen Profilauslauf von mind. 10° aufweisen. Die Einstellung der Radien- und Fasefräser muss so gewählt werden, dass kein Kontakt mit der Oberfläche entsteht.


Profilziehklingen

Profilziehklingen sind mit einem Profilauslauf ausgestattet und können bei exakter Einstellung problemlos zur Nachbearbeitung der EGGER PerfectSense-Lackplatten verwendet werden. Um eventuelle Beschädigungen an der Oberfläche zu vermeiden, sind Ziehklingen mit einem vergrößerten Profilauslauf von bis 15° zu empfehlen.

Flachziehklingen

Flachziehklingen sollten vorzugsweise von der Kante zur Platte eine Schrägstellung von 2-4° aufweisen um die Oberfläche nicht zu berühren.

Alle Abmessungen auf Anfrage lieferbar

EGGER PerfectSense

Nutbearbeitung

Für die Nutbearbeitung sollten für eine optimale Kantenqualität vorzugweise Werkzeuge mit einer hohen Zähnezahl gewählt werden. Der Zahnvorschub (f_z) sollte sich bei der Bearbeitung im Gleichlauf (GLL) im Bereich von 0,03 - 0,06 mm bewegen.

Durchmesser D [mm]	Drehzahl n [min ⁻¹]	Zähnezahl Z	Vorschubgeschwindigkeit v _f [m/min]
180	6.000	36	7 - 14
200	6.000	48	8 - 16

Weitere Abmessung auf Anfrage lieferbar

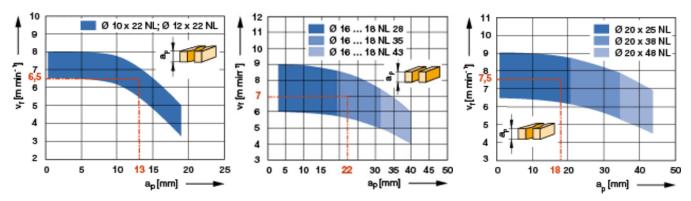
CNC Stationärmaschinen

Für die Bearbeitung auf Oberfräsmaschinen und Bearbeitungszentren sind am besten Spiral-Vollhartmetallfräser (VHW) oder bevorzugt diamantbestückte (DP) Oberfräser geeignet.

Es ist für eine gute Werkstückspannung auf der Maschine zu sorgen. Zu empfehlen sind stabile und steife Schrumpfspannfutter vom Typ Leitz ThermoGrip[®] für höchste Rundlaufgenauigkeit, Wuchtgüte und für perfekte Schnittqualität. Ein gutes Bearbeitungsergebnis kann nur bei ausreichender Steifigkeit der Maschine erreicht werden.

Empfohlene Einsatzdaten:

Drehzahl n = 18.000 - 24.000 min⁻¹

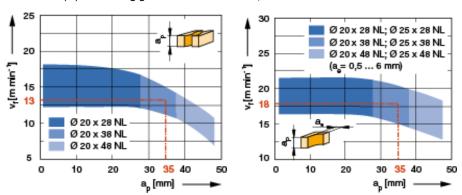


EGGER PerfectSense

Nuten und Formatieren

Oberfräser Diamaster PRO

Vorschub (v_f) in Abhängigkeit der Schnitttiefe a_p:


D	GL	NL	s	ID	
[mm]	[mm]	[mm]	[mm]	LL	RL
10	70	22	12x40		091264
12	70	22	12x40		091265
12	90	28	20x50		191095
14	90	28	16x50		091267
16	90	28	16x50	091271	091270
16	100	28	25x60		091272
16	115	43	25x60	091276	091275
18	95	35	20x50		091278
18	105	43	20x60	091281	091280
20	100	28	25x60	091285	091284
20	95	35	20x60		091286
20	115	43	25x60		091290
20	120	48	25x60	091294	091293
20	130	58	25x60		191041

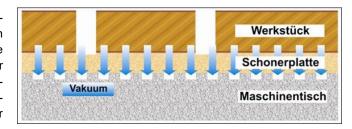
EGGER PerfectSense

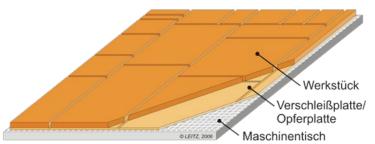
Oberfräser Diamaster QUATTRO

Vorschub (v_f) in Abhängigkeit der Schnitttiefe a_p:

D	GL	NL	S	ID	
[mm]	[mm]	[mm]	[mm]	LL	RL
20	90	28	20x50		091235
20	120	48	25x60	091246	091247
25	110	38	25x60		091251
25	120	48	25x60	091252	091253

Weitere Abmessungen bzw. Ausführungen auf Anfrage lieferbar




EGGER PerfectSense

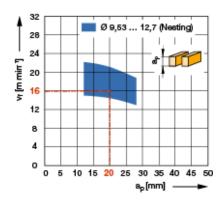
Aufteilen im Nesting-Verfahren

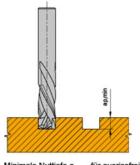
Fertigungsablauf mit Schonerplatte

Das Werkstück wird möglichst vollflächig auf dem Maschinentisch mittels Vakuum aufgespannt. Als Auflage dient den zu bearbeitenden Werkstücken dabei meist eine dünne MDF-Platte, die als "Maxi-Sauger" und Schonerplatte für den Maschinen-Rastertisch verwendet wird. Die Fräswerkzeuge werden in der Tiefe nur so gering als möglich eingestellt bzw. abgestimmt, um die Schonerplatte nicht zu sehr zu verschleißen (max. 0,3 - 0,5 mm tiefer).

Fertigungsablauf mit Gummiteppich

Als Auflage dient ein Rastergummiteppich durch den das Werkstück mittels Vakuum gespannt wird. Die Fräswerkzeuge werden in der Tiefe mit 0,1 mm Überstand eingestellt bzw. abgestimmt, um den Gummi nicht zu sehr zu verschleißen (max. 0,05 - 0,1 mm tiefer). Dieser Teppich wird alle 1 - 2 Jahre gewechselt.




EGGER PerfectSense

Oberfräser Nesting-Ausführung

Oberfräser HW-massiv Z 2+2

Vorschub (v_f) in Abhängigkeit der Schnitttiefe a_p:

Minimale Nuttiefe $\mathbf{a}_{\mathsf{p}\,\mathsf{min}}$ für ausrissfreien Schnitt

D [mm]	D [in]	GL [mm]	GL [in]	NL [mm]	NL [in]	S [mm]	S [in]	a _{p min} [mm]	DRI	ID
9,53	3/8"	76,2	3"	23	7/8"	9,53x40	3/8"x1 1/2"	5,5	RL	240518
9,53	3/8"	76,2	3"	28,6	1 1/8"	9,53x40	3/8"x1 1/2"	7	RL	240503
10		75		28		10x40		8	RL	240530
12,7	1/2"	76,2	3"	32	1 1/4"	12,7x40	1/2"x1 1/2"	5	RL	240504
12,7	1/2"	76,2	3"	32	1 1/4"	12,7x40	1/2"x1 1/2"	6	RL	240505
12,7	1/2"	88,9	3 1/2"	34,9	1 3/8"	12,7x40	1/2"x1 1/2"	6	RL	240506
12,7	1/2"	101,6	4"	43	1 5/8"	12,7x40	3/8"x1 5/8"	20	RL	240507

Weitere Abmessungen bzw. Ausführungen auf Anfrage lieferbar

EGGER PerfectSense

Oberfräser Diamaster PRO DP Z 2+2

Vorschub (v_f) in Abhängigkeit der Schnitttiefe ap:

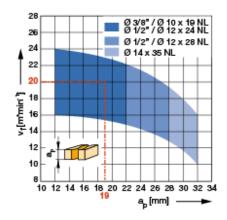


Tabelle opt. Werkstückdicken

NL [mm]	Werkstückdicke [mm]	ID
19	9 - 16	191059
24	13 - 20 (22)	191060
28	19 - 25	191061
35	22 - 32	191101

Weitere Abmessungen bzw. Ausführungen auf Anfrage lieferbar

D [mm]	GL [mm]	NL [mm]	S [mm]	DRI	ID
10	65	19	10x40	RL	191059
12	70	24	12x42	RL	191060
12	75	28	12x42	RL	191061
14	90	35	16x50	RL	191101

Oberfräser Diamaster PRO³ DP Z 3+3

Vorschub (v_f) in Abhängigkeit der Schnitttiefe a_p:

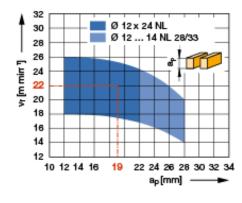


Tabelle opt. Werkstückdicken

NL [mm]	Werkstückdicke [mm]	ID
19	9 - 16	191030
24	13 - 20 (22)	191031
28	19 - 25	191032
33	20 - 30	191033

EGGER PerfectSense

D [mm]	GL [mm]	NL [mm]	S [mm]	DRI	ID
12	65	19	12x42	RL	191030
12	70	24	12x42	RL	191031
12	75	28	12x42	RL	191032
14	90	33	16x50	RL	191033

Weitere Abmessungen bzw. Ausführungen auf Anfrage lieferbar

Um eine optimale Werkzeugauswahl in Verbindung mit Maschine, Material und Bearbeitungsparameter zu finden, wird eine Beratung bzw. Empfehlung von einem Leitz Anwendungstechniker empfohlen.

Bohren

Zum Bohren werden hartmetallbestückte oder Vollhartmetall (VHW)-Spiral-, Dübelloch- und Beschlagbohrer empfohlen. Auf CNC-Bearbeitungszentren ist ein Einsatz der Beschlagbohrer in der Hauptspindel statt im Bohrbalken, aufgrund der höheren Stabilität zu empfehlen.

Für alle Anwendungen können die folgenden Werkzeuge laut den nachstehenden Tabellen eingesetzt werden:

Dübellochbohrer

Drehzahl n [min^{-1}] 3.000 - 6.000 Vorschubgeschwindigkeit v_f [m/min] 0,5 - 2,0

Dübellochbohrer HW-massiv - Excellent

D	GL	L	NL	S	ID	
[mm]	[mm]	[mm]	[mm]	[mm]	LL	RL
3	70	68,5	16	10x45	033550	033551
5	70	68,5	35	10x27	033496	033497
8	70	68,5	35	10x27	033500	033501
10	70	68	35	10x27	033540	033541

EGGER PerfectSense

Dübellochbohrer HW-bestückt - Premium

D	GL	L	NL	S	II	D
[mm]	[mm]	[mm]	[mm]	[mm]	LL	RL
5	70	68,5	35	10x30	033484	033485
5,1	70	68,5	35	10x30	033492	033493
8	70	68,5	35	10x30	033488	033489
10	70	68,5	35	10x30	033490	033491

Weitere Abmessungen auf Anfrage lieferbar

Durchgangslochbohrer

Drehzahl n [min $^{-1}$] 3.000 - 6.000 Vorschubgeschwindigkeit v_f [m/min] 0,5 - 1,5

Dübellochbohrer HW-massiv - Excellent

D	GL	NL	S	ID	
[mm]	[mm]	[mm]	[mm]	LL	RL
5	70	35	10x27	034100	034101
8	70	35	10x25	034104	034105
10	70	35	10x22	034114	034115

Durchgangslochbohrer HW-bestückt - Premium

D	GL	NL	S	ID	
[mm]	[mm]	[mm]	[mm]	LL	RL
5	70	35	10x25	033964	033965
8	70	35	10x25	033966	033967

EGGER PerfectSense

Beschlaglochbohrer

Drehzahl n [min⁻¹] 3.000 - 6.000 Vorschubgeschwindigkeit v_f [m/min] 0,5 - 1,5

Beschlaglochbohrer HW-massiv

D	GL	L	S	ID	
[mm]	[mm]	[mm]	[mm]	LL	RL
15	70	68	10x26	034812	034813
20	70	68	10x26	034814	034815
25	70	68	10x26	034816	034817
30	70	68	10x26	034820	034821
35	70	68	10x26	034822	034823

Weitere Abmessungen auf Anfrage lieferbar

Beschlaglochbohrer HW-massiv mit Fase

D	GL	L	S	ID	
[mm]	[mm]	[mm]	[mm]	LL	RL
15	70	68	10x26	130073401	130073400
20	70	68	10x26	130073403	130073402
25	70	68	10x26	130073405	130073404
30	70	68	10x26	130073409	130073408
35	70	68	10x26	130073411	130073410

EGGER PerfectSense

Standwege

Werkzeugstandwege sind abhängig von einer Vielzahl von Einflussfaktoren, wodurch im Rahmen dieser Bearbeitungsrichtlinie keine Standwegaussagen oder Rechte abgeleitet werden können. Die Angaben zu den Werkzeugen und Bearbeitungsparametern sind empfohlene Richtwerte. Maschinen- oder ablaufbedingte Konstellationen können zu abweichenden Parametern führen. Eine optimale Anpassung von Maschine, Werkzeug und Material sowie kundenspezifische Anforderungen können nur vor Ort gemeinsam mit einem Leitz Anwendungstechniker vorgenommen werden. Aufgrund der hohen Qualitätsansprüche und speziellen Oberflächenbeschaffenheit der EGGER PerfectSense-Lackplatten wird unter Bezugnahme der oben genannten Einflussfaktoren eine Verkürzung der Werkzeugstandwege im Vergleich zu herkömmlich beschichteten Platten der Firma EGGER erwartet.

EGGER PerfectSense

Erläuterung der Kurzzeichen

A	= Мав А	LL	= Linkslauf
a.	 Schnittdicke (radial) 		
a _p	= Schnittdicke (axial)	М	= Metrisches Gewinde
ÁBM	= Abmessung	MBM	 Mindestbestellmenge
APL	 Abplattlänge 	MC	 Mehrbereichsstahl, beschichtet
APT	= Abplatttiefe	MD	= Messerdicke
AL	= Arbeitslänge	min ⁻¹	 Umdrehung pro Minute
AM	= Anzahl Messer	MK	= Morsekonus
AS	 Anti Schall (lämreduzierte Ausführung) 	m min ⁻¹	= Meter pro Minute
		m s ⁻¹	 Meter pro Sekunde
Ь	= Auskraglänge		
В	= Breite	n	= zulässiger Drehzahlbereich
BDD	= Bunddicke	n _{max} .	= maximale Drehzahl
BEM	= Bernerkung	NAL	= Nabenlage
BEZ	= Bezeichnung	ND	= Nabendicke
BH	= Bestückungshöhe	NH	= Nullhöhe
ВО	= Bohrungsdurchmesser	NL	= Nutzlänge
		NLA	= Nebenlochabmessung
CNC	= Computerized Numerical Control	NT	= Nuttiefe
d	= Durchmesser	Р	= Profil
D	= Durchmesser	POS	= Fräserposition
D0	= Nulldurchmesser	PT	= Profiltiefe
DA	= Außendurchmesser	PG	= Profilgruppe
DB	= Bunddurchmesser		
DFC	 Dust Flow Control (optimierte Späneerfassung) 	QAL	 Schneidstoffqualität
DGL	 Anzahl Doppelglieder 		
DIK	= Dicke	R	= Radius
DKN	= Doppelkeilnut	RD	= Rechtsdrall
DP.	 Polykristalliner Diamant (PKD) 	RL	= Rechtslauf
DRI	= Drehrichtung	RP	= Radius Fräsprofil
FAB	= Falzbreite	s	= Schaftabmessung
FAT	= Falztiefe	SB	= Schnittbreite
FAW	= Fasewinkel	SET	= Set
FLD	= Flanschdurchmesser	SLB	= Schlitzbreite
f _z	= Zahnvorschub	SLL	= Schlitzlänge
f _{z or}	 effektiver Zahnvorschub 	SLT	= Schlitztiefe
		SP	= Spezialstahl
GEW	= Gewinde	ST	 Gusslegierungen auf Kobalt-Basis,
GL	= Gesamtlänge		z.B. Stellit ^e
GS	 Grundschneide (Bohrschneide) 	STO	 Schafttoleranz
		SW	= Spanwinkel
Н	= Höhe		
HC	 Hartmetall, beschichtet 	TD	 Tragkörperdurchmesser
HD	 Holzdicke (Werkstückdicke) 	TDI	 Tragkörperdicke
HL	 Hochlegierter Werkzeugstahl 	TG	= Teilung
HS	 Schnellarbeitsstahl (HSS) 	TK	 Teilkreisdurchmesser
HW	= Hartmetall		
ID	= Identnummer	UT	= Ungleichteilung der Schneiden
īV	= Isolierverglasung	V	= Vorschneideranzahl
		v _c	 Schnittgeschwindigkeit
KBZ	= Kurzbezeichnung	V,	 Vorschubgeschwindigkeit
KLH	= Klemmhöhe	νΈ	= Verpackungseinheit
KM	= Kantenmesser	VSB	= Verstellbereich
KN	= Keilnut		
KNL	= Kombinationsnebenloch bestehend aus:	WSS	= Werkstückstoff
	2/7/42 2/9/46,35 2/10/60	Z	= Zähnezahl
L	= Länge	ZA	= Zannezani = Anzahl Zinken
i .	= Lange = Aufspannlänge	ZF.	= Zahnform (Schneidenform)
ĹD	= Autspannlange = Linksdrall	ZL ZL	= Zannorm (schneidenform) = Zinkenlänge
LEN	= Linksdraii = Leitz-Norm	2L	- Alikelialige
LEIN	- ESIZ-NOITI		

In der vorliegenden Bearbeitungsempfehlung werden entsprechende Parameter für die optimale Bearbeitung der bezeichneten Werkstoffe dargestellt. Die Angaben zu Werkzeugen und Bearbeitungsparametern sind Richtwerte ohne Anspruch auf Vollständigkeit und Allgemeingültigkeit. Maschinelle oder ablaufbedingte Randbedingungen können zu abweichenden Einsatzparametern führen. Im Einzelfall können individuelle Anpassungen erforderlich sein. Insbesondere sind die jeweiligen Herstellerangaben über den bestimmungsgemäßen Einsatz von Maschine, Werkzeug und Werkstoff zu beachten. Aus dieser Bearbeitungsempfehlung können keine Rechte abgeleitet werden. Zur Lösung von komplexen Aufgabenstellungen wenden Sie sich bitte an unseren Fachberater.

Die Angaben basieren auf dem aktuellen Stand der Technik und wurden mit besonderer Sorgfalt und nach bestem Wissen erstellt. Durch die kontinuierliche technische Weiterentwicklung sowie durch neue Normen und Gesetze können technische Änderungen erfolgen.